skip to main content


Search for: All records

Creators/Authors contains: "Jiang, Qian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Introduction

    A large amount of literature has indicated that excitatory synaptic transmission plays a crucial role in epilepsy, but the detailed pathogenesis still needs to be clarified.

    Methods

    In the present study, we used samples from patients with temporal lobe epilepsy, pentylenetetrazole‐kindled mice, and Mg2+‐free‐induced epileptic cultured hippocampal neurons to detect the expression pattern of STK24. Then, the whole‐cell recording was carried out after STK24 overexpression in the Mg2+‐free‐induced epileptic cultured hippocampal neurons. In addition, coimmunoprecipitation was performed to detect the association between endogenous STK24 and main subunits of NMDARs and AMPARs in the hippocampus of PTZ‐kindled mice.

    Results

    Here, we reported that STK24 was specifically located in epileptic neurons of human and pentylenetetrazole‐kindled mice. Meanwhile, the expression of STK24 was significantly down‐regulated in these samples which are mentioned above. Besides, we found that the amplitude of miniature excitatory postsynaptic currents was increased in STK24 overexpressed epileptic hippocampal cultured neurons, which means the excitatory synaptic transmission was changed. Moreover, the coimmunoprecipitation, which further supported the previous experiment, indicated an association between STK24 and the subunits of the NMDA receptor.

    Conclusion

    These findings expand our understanding of how STK24 involved in the excitatory synaptic transmission in epilepsy and lay a foundation for exploring the possibility of STK24 as a drug target.

     
    more » « less
  2. Abstract BACKGROUND

    The search for substitutes for antibiotics has recently become urgent. In our previous work, dietaryα‐ketoglutarate (AKG) combined with allicin improved growth performance and enhanced immunity in growing pigs, whereas the effects on them of intestinal microbiota were unclear. Here, we further investigate the effects of dietary AKG and allicin supplementation on the composition and diversity of intestinal microbiota in growing pigs.

    RESULTS

    Treatment with a combination of AKG and allicin enhanced cecal bacteria richness and diversity, as evidenced by changes in Chao 1, ACE, Shannon, and Simpson values when compared to the control group and antibiotics group. At the phylum level, Bacteroidetes and Firmicutes were the two most abundant phyla. Treatment with a combination of AKG and allicin increased the numbers of Firmicutes and reduced the numbers of Bacteroidetes.Prevotellawas the most abundant genus; it was increased by treatment with a combination of AKG and allicin. Furthermore, compared with the antibiotic group, the level of acetate was increased in the AKG group with or without allicin. Treatment with a combination of AKG and allicin increased the levels of cecal butyrate and total volatile fatty acids (VFA) when compared with the control group in growing pigs.

    CONCLUSION

    Dietary 1.0% AKG combined with 0.5% allicin improved cecal microbial composition and diversity, which might further promote VFA metabolism in growing pigs. © 2018 Society of Chemical Industry

     
    more » « less